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[. INTRODUCTION

There is general agreement that the two most important factors determining electron transfer rates
in solution are the degree of electronic interaction between the donor and acceptor sites, and the
changes in the nuclear conﬁgurations of the donor, acceptor, and surrounding medium that occur
or loss of an electron [1-3]. The electronic interaction of the sites will be very
weak, and the electron transfer slow, when the sites are far apart or their interaction is symmetry
or spin forbidden. Since electron motion is much faster than nuclear motion, energy conservation
requires that, prior to the actual electron transfer, the nuclear configurations of the reactants and
the surrounding medium adjust from their equilibrium values to a configuration (generally)
intermediate between that of the reactants and products. In the case of electron transfer between
two metal complexes in a polar solvent, the nuclear conﬁguration changes involve adjustments in
lﬂC meta ‘ ‘lngIU dIlU lﬂlrdllgdﬂ(l DOHU 1cngmb dl’l(l dng dl’l(l Lﬂdﬂges lﬂ l[lC OrlCﬂ[dllOﬂS OI Ine
surrounding solvent molecules. In common with ordmary chemical reactions, an electron transfer
reaction can then be described in terms of the motion of the system on an energy surface from the

reactant equilibrium configuration (initial state) to the product equilibrium configuration (final
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This chapter will focus on the predictions of the traditional two-state electron transfer

vate A ~Anmaslac t\‘—\nc A~ atata) ~An giivatin
weu \/Ullll}lc}\ \ 1151 IUll staic ) uuuugulauuu.

model. Only the ground and lowest excited state of the system are considered and contributions

from higher electronic states are ignored. Thermal and optical electron transfers in both weakly

nevertheless have important implications.

II. ZERO-ORDER ENER

GY SURFACES
Provided a hypothetical change in the charge on the reactants produces a proportional change in
the dielectric polarization of the surrounding medium, the distortions of the reactants and
products from their equilibrium configurations can be described in terms of diplacements on
harmonic free-energy curves with identical force constants [1-5] This is illustrated in Figures 1
and 2 where the free energy of the close-contact reactants plus surrounding medium (Curve Gj)
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plotted vs. the reaction coordinate for a self-exchange reaction. The free-energy curves depict the
zero-order or diabatic states of the system. Figure 1 shows the diabatic free-energy curves for a
self-exchange reaction (Eq. (2.1a), AG° = 0) and Figure 2 the curves for an electron transfer

reaction accompanied by a net chemical change (Eq. (2.1b), AGO <0 for an exer



Fe(Hy0)62* + Fe(H20)g3* = Fe(H20)63* + Fe(H20)62" (2.1a)
Fe(H20)62* + Ru(bpy)s3* = Fe(H20)6>" + Ru(bpy);>* (2.1b)

The curves have identical force constants fand their minima are separated by a, The vertical
difference between the free energies of the reactants and products of a self-exchange reaction at
the reactants' (or products’) minimum (equilibrium configuration) is the reorganization parameter
A = fay2/2. Denoting the displacement along the reaction coordinate by x, a dimensionless
reaction coordinate X may be defined as x/a,: X varies from 0 to 1 as the reaction proceeds and,

with X as the coordinate, the force constants of the parabolas are equal to 2A.

G, = Lyi-ap
2 (2.2a)
G, = l(x— 2) +AG° =X -1 +AG
2 (2.2b)
The sum and difference of the zero-order free energies are given by
(Gp+ Ga) = 2MX-1/2)2 + 112 + AG® (2.3a)
(Gp-Ga) = M1-2X) + AG® (2.3b)

and the free-energy curves defined by these equations are included in Figures 1 and 2. The sum
of the free energies of the reactants and products is a parabola[6] with force constant 4A centered
at X = 1/2 with its minimum vertically displaced relative to the reactant minimum by A/2 + AG°.
Similarly, the dependence of the average diabatic energy (Gp + Ga)/2 on X also is harmonic but
with force constant 27, identical to that of the separated reactants and product curves. The
parabola defined by the average energies is still centered at X = 1/2 but with its minimum
vertically displaced relative to the reactant minimum by A/4 + AG9/2. Since the difference
between the diabatic free-energies of the reactants and products (Gp — Gy) is linearly related to X,
this difference affords a measure of the progress of the reaction [7, 8] and, as a consequence, it
provides an alternate definition of the reaction coordinate. For both self-exchange reactions and
reactions accompanied by a net chemical change, the slope of (Gp — G,) vs. X is equal to -2A.
The free energy of activation for the electron transfer is the difference between the free

energies of the transition-state configuration and the equilibrium configuration of the reactants.



The equilibrium configuration of the reactants in the zero-interaction limit is located at X' = 0 with
Gaeq=0. At the transition state, Ga* = Gp™* so that X* and the free energy of activation in the

zero-interaction limit are given by Eqgs. (2.5a) and (2.5b), respectively.

1. AG
X =]1+=— 2.
2( + 1 J (2.5a)
AG =,1(r)2=%(1+‘3—fi) (2.5b)

Evidently AG* = A/4 for AG® = 0. Three free-energy regimes can be distinguished depending on
the relative magnitudes of A and AG®. When —~AGP < A the reaction is in the normal regime where
AG* decreases, and the rate constant increases, with increasing driving force. The reaction
becomes barrierless (AG* = 0) when —AG© =A and AG* is then insensitive to changes in AGo. If
the driving force is increased even further then —AG® > A and AG™ increases, and the rate constant
decreases, with increasing driving force. This is the counter-intuitive inverted regime.

By using the Gibbs-Helmholtz equations, it follows from Eq. (2.5b) that the activation
enthalpy and entropy are given by:

RV AR AR AN
M == F(TJ +—2-—(1+7—) (2.62)
As|, (A | A8 Al
Af_41(/l)+2(1+/{) (2.6b)

where AH, = 8(/1/ ]') / a(1/ T ) and AS; = —8(/1) / 8(7’ ) ] Equation (2.5b) for the free energy of

activation can be rewritten as

A

AG = Z 1—( (2.6¢)

2
AG AG (. AG
+ 1+
A 2 A
which is the same form as the activation enthalpy and entropy expressions.

The above equations give the activation parameters derived for the classical model.
Departures are expected, and observed, for nonparabolic surfaces that are very weakly coupled

and/or when the experimental activation parameters contain contributions from other sources
[10]

III. SEMICLASSICAL TREATMENT



Electronic interaction of the reactants gives rise to the first-order energy surfaces shown as G
and G in Figure 3. The splitting at the intersection of the zero-order energy surfaces in Figure 3
is equal to 2H,p, where Hay is the electronic matrix element. We will treat Hyp, as a positive

quantity.
A. First-Order Energy Surfaces

If ¥, and ¥}, denote the wave functions of the zero-order initial (reactant) and final

(product) states, their interaction gives rise to two linear combinations, the first-order or adiabatic

states

V1 =caVat+cp¥% (2.6a)
V2 =ca¥ —cpV¥a (2.6b)

where ¥ is the wave function for the lower (ground) and ¥ is the wave function for the upper
(excited) adiabatic state (energies G| and Ga, respectively) when the overlap integral Syp, is
neglected (or is zero by construction [1 1]), and the mixing coefficients are normalized, i.e.,

ca? + cp? = 1. The energies of the adiabatic states are obtained by solving the two-state secular
determinant

G,-G H,
H, G -G
where, as before, G, = Hag = <V, |H| V> and Gy = Hipp = <Y | H| wi,> are the energies of the

diabatic states. H is the total Hamiltonian operator of the system including the interaction terms.

=0 Q2.7)

The roots of the determinant are

1 2 1/2
G=-G+G)-|(G-G) +44,
2{( ) [( ) b} } (2.82)

G, =%{(Gb+@)+[(q,—o;)2+4ff§bm} (2.8b)

The difference between the adiabatic energies is given by Eq. (2.9) while their sum is given by Eq.
(2.10).
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(G,-G)-|(G.-a)+arm, (2.99)
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d (2.9b)

(G,+G)=(G,+3) (2.10a)
A 2

:5{(2)(-1) +1J+AG° o100

Evidently the average adiabatic energy (G, + G1)/2, like the average diabatic energy, is described
by a parabola with force constant 2A centered at X = 1/2 with its minimum vertically displaced by
A4 + AG9/2 relative to the diabatic minimum.

The product of the adiabatic energies is given by Eq. (2.11a), the product of the mixing
coefficients is given by Eq. (2.11b), and (1 ~ 2¢y?) is given by Eq. (2.11c¢) [11],

G1G2 = GaGp — Hap? (2.11a)

cac = Hap/(Go — G1) (2.11b)
_[G-6,

(1-24)—(—02_—& 2.11¢)

The dependence of cp? on the reaction coordinate is given by

(1-2.X)
{[(1 —2.X)+ AGO//IF +4/{§b//12}

(2.12)

The squares of ¢, and ¢y are the fraction of the charge of the transferring electron that is on the
donor and acceptor, respectively, at any given nuclear configuration. Thus cp? also provides a
measure of the progress of the electron transfer. However, unlike X, which is a nuclear
configuration coordinate, cy? is an electronic configuration coordinate. Figure 6 shows plots of
cp? vs X for various values of Hyp/A. As is evident from Eq. (2.12) and Figure 6, the two
coordinates are not linearly related except at very large Hap. In the very weak interaction limit
(diabatic curves, Hap = 0) no electron density is transferred until X = 0.5 when the electron
"suddenly" jumps from the donor to the acceptor. In this case cp? is not a continuous function of
X: instead cp? =0 for all X < 1/2 and cp2 = 1 for X> 1/2. As H,p, increases, charge density is
transferred more gradually (with more delocalization present in the initial reactant configuration)

and cp? approaches linearity in X when Hap > A.



As shown in Figure 3, the splitting at the intersection of the diabatic energy curves lowers the

barrier by H,p. Further, as Hyy, increases, the reactant and product minima of the adiabatic curves

move closer together. The positions of the minima (reactant's and product's equilibrium
configurations) are given by
- -
1 ( 44" )
— ab
Koo = 5|1 1-—= (2.13a)
<1\
r p 2 1727
1 44
= = _ ab
Koy = 5| 14| 1 - — (2.13b)
P4 \ L /

and their energies are lowered by Hpp2/Arelative to the diabatic minima (4] In view of these
changes the free energy of activation for a self-exchange reaction with appreciable coupling of the

reactants is given by

= M4 — Hypp + Hap2/A (2.14a)
2
— 1(1 2}:[ab\ /Y 1 ALY
=— 1= {<.14D)
4 A
The second and third terms on the RHS of Eq. (2.14a) are due to the lowering of the barrier and

the stabilization of the reactants, respectively [4],
Three classes of symmetrical systems may be distinquished depending on the magnitude

of the electronic coupling of the donor and ac ceptor sites [12-14]. In Class 1 systems the

the separate reactants (i.e., the adiabatic energy curves are very close to the diabatic curves).

Activated electron transfer either does not occur at all or it occurs only very slowly (because of

its high nonadiabaticity) with AG* = A/4 and optical electron transfer can not occur Class II
tems (0 < Hy,<A/2,Figure 3) possess new optical and electronic

 pro er‘rmq in addition to

those of the separate reactants. They remain valence trapped or charge localized: the electron
transfers range from nonadiabatic (Hap< 10 cm-!) to strongly adiabatic (Hap> 200 cm-!) with

AG" given by Eq. (2.14). Equations (2.13) and (2.14) hold as long as the self-exchange reaction is

described by a double well potential, i.e., as long as the system remains valence trapped. In Class

x > * (=4 v



[T systems the interaction of the donor and acceptor sites has become so large that two separate
minima are no longer discernible and the lower energy surface features a single well at X'=1/2
(Figure 4). This is the delocalized case which occurs when Hap > A/2. The latter condition
follows readily from the zero barrier limit (AG™ = 0) of Eq. (2.14).

From Eq. (2.3b) the vertical difference between the diabatic energies at the equilibrium

configuration (adiabatic minimum) of the reactants is given by

(Go— Galeq = M1 — 2Xmin) ' (2.15a)
) 1/2
= /l[l—%} (2.15b)

It therefore follows from Eq. (2.9a) that the vertical difference between the adiabatic energies at

the reactants' equilibrium configuration is given by

(G2=Gl)eq = 2 (2.16)

This result is independent of Hap, for Hap <A/2. In other words, the vertical difference between
the free energies of the reactants and products of a symmetrical reaction remains equal to A at the
equilibrium configuration of the reactants (or products) regardless of the magnitude of the
electronic coupling as long as the system remains valence trapped [11], Although the repulsion
of the reactant and product curves increases with increasing Hap, this is compensated for by the
reactant and product minima moving closer together [15], The net effect is that the adiabatic
energy difference at Xjn remains equal to A.

It follows from Egs. (2.11c) and (2.16) that, for Hap < A/2, (cp?)eq is given by

4H2 1/2
——bJ 2.17)

<4u=%1{%-%
Comparison with Eq. (2.13a) shows that, for a symmetrical system with Hy, > 0, (Cbz)eq =
Xmin,a. For Hap/A = 0.3 this corresponds to Xmina = 0.10. Moreover, at the transition state for
a symmetrical system cy2 = X* = 1/2. The equilibrium and transition-state configurations are the
only configurations at which X and cy?2 for a symmetrical system are equal.

Values of (G2 - G1)/A calculated from Eq. (2.9b) are plotted vs X for various Hap/A values
in Figure 5. The adiabatic energy difference flattens with increasing Hyp, and becomes essentially
independent of X when Hap > 2A. Under these conditions the system is deeply into the Class I11



regime. Further, it is evident from Eq. (2.8) that, except for extreme values of X, the force
constants of the vertically aligned adiabatic surfaces in very strongly coupled symmetrical
systems (Hap 2 2A) are equal to that of the original diabatic parabolas (cf discussion of Eq.
(2.10)). Figure 6 shows that for typical symmetrical Class II systems most of the charge density
is transferred between X = 0.4 - 0.6.

2. Unsymmetrical Systems

As in the case of symmetrical systems, the properties of an unsymmetrical Class I system are
essentially those of the separate reactants. Although Class II systems are valence trapped,
sufficiently endergonic reactions can exhibit a single minimum close to the noninteracting reactant
minimum. This minimum shifts to X* = 0.5 only when Hyy, becomes very large. Provided that
Hap < (A + AG9)/2 and {AGO| < A, the positions of the reactant and product minima are given by
Egs. (2.18a) and (2.18b), while the location of the transition state is given by Eq. (2.18¢).

H, /%

i T A 2.18a
min,a (1 + AGO//l)z ( )
2 2
Kinp =1 __HyE - (2.18b)
’ (1-AG°/A)
1+AG°[A-2H, A
Jd* = ( / ab/ ) (2180)
21-24,/4)
The free energy of activation is given by
o 042 2
ag =2y 800, BGY g e 2.19)

+ + Ly P ——
4 2 4A-2H,) (A+AG°)
In the above equations —AG? is the driving force in the noninteracting (Hap = 0) system (15],
B. Rate Constant Expressions

The first-order rate constant for intramolecular electron transfer or for electron transfer within the

precursor complex formed from the reactants in a bimolecular reaction is given by



kel = KelVaexp(—AG*/RT) (3.1)

where K| is the electronic transmission coefficient, V; is the nuclear vibration frequency that takes
the system through the intersection region and AG™ is the free energy of activation for the
electron transfer [4].

The electronic transmission coefficient is the probability that electron transfer will occur
once the system has reached the intersection region (transition state). Provided that the
electronic interaction of the reactants is sufficiently strong K¢} = 1 and the electron transfer will
occur with near unit probability in the intersection region: the electron transfer reaction is
adiabatic with the system remaining on the lower energy surface on passing through the

intersection region. Under these conditions k) 1s given by

kel = Vaexp(-AG*/RT) (3.2)

On the other hand, for a nonadiabatic reaction, K¢} << 1, K¢|Vh = V| and the rate constant is

given by Eq. (3.3) where Vg is the electron hopping frequency in the activated complex. The

Landau-Zener treatment yields Eq. (3.4) for Vg [16,17]
kel = Velexp(-AG™*/RT) (3.3)
> 3 1/2
v, - 2| (3.4)
A \ ART

In effect, the adiabatic and nonadiabatic limits of the transition state formalism correspond to Vej
>> Vy and Ve << Vj, respectively.

The frequency of electron hopping in the activated complex may be estimated from
2Hyp/h, the oscillating frequency of the two degenerate diabatic states [16], Evidently Ve~ 1013
s-1 for interaction energies of only a few hundred cals. A similar estimate is obtained from the
Landau-Zener treatment of the intersection region [16]. Since the system typically spends about
10-13 s in the intersection region (i.e., V; ~1013 s-1), the electron transfer will generally be

adiabatic for interaction energies larger than about 100 - 300 cal (30 - 100 cm-1).

C. Reorganization Parameters

10



The reorganization parameter is usually broken down into inner-shell (vibrational) and

outer-shell (solvational) components.

A = Ain * Aout (3.5)

The inner-shell reorganization energy is generally treated within an harmonic approximation [18].
The outer-shell reorganization energy depends upon the properties of the solvent. When a
continuum model for the solvent is used Aqy; is a function of the dielectric properties of the

medium, the distance separating the donor and acceptor sites, and the shape of the reactants.
1. Inner-Shell Reorganization Energy

In order to illustrate the approach used to calculate the inner-shell comtribution to the
reorganization barrier we consider the symmetrical stretching vibrations of the two reactants in
the Fe(H0)g2* - Fe(Hp0)g3* self-exchange reaction (Eq. (2.1a)). The inner-shell reorganization

term is the sum of the reorganization parameters of the individual reactants, i.e.,

Ain = A(da0 - d30) + A3(d30 — &0) (3.6a)

The first term on the RHS is the energy required to change the Fe-O distance in Fe(H0)g2* from
its equilibrium value d>9 to the equilibrium value d3° in Fe(H»0)g3* and the second term is the
energy required to change the Fe-O distance in Fe(H,0)g3* from d30 to d,0. Denoting (d20 -
d30) by AdY, the vertical reorganization energy is given by Eqgs. (3.6b) and (3.6¢) where f5 and f3

are the respective breathing force constants.

A = 6f2(§do) + 6f3(‘2w ) (3.6b)
=3(s5+ %)(8e) (3.6¢)

Evidently the contributions of the Fe(H0)¢2*+ and Fe(H20)g3* breathing modes to Ajy are
directly proportional to their respective force constants.
In the activation process, the energy required to reach the transition state configuration is

given by

AG, =3p(d - ) +3f(d - &) (3.7a)

11



Energy conservation requires that the Fe-O distances in the Fe(H20)g2* and Fe(H>0)g3* adjust

to a common value d* prior to the electron transfer.
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Minimizing the resulting reorganization energy expression yields Eq. (3.7¢) and substitution into
Eq. (3.7a) gives Eq. (3.7d).

A_{_ﬁ \.)./b)
. 3fA(ad%)
AG;, = "’j(‘ - ) (3.7d)
I2 713
(2~ )= /b’ (3.7¢)
\ 2 ) /‘2'+f3 )
A’
7 - =22 (3.79)
( 3) VAR

reorganizes more than the Fe(H0)3" ion. Note also that AGjp* < Ajp/4 because the free-energy
surfaces are not harmonic along the reaction coordinate [15],

Considerable simplification results from using a common, reduced value fj, for the force

constant of the Fe(H20)¢2" and Fe(Hp0)g3* symmetrical stretching vibrations.

2h0/5

S =7 - (3.8)
(/5+4)
Under these conditions
LD
a"=(2, ) (3.9a)
2
3/ (ad)
AG, = ————'"\2 ! (3.9b)
2
%y =6 1o (82°) (3.9¢)



and the two symmetrized reactants reorganize to the same extent with AGi,* now equal to A;p/4.
The relationship between the vertical reorganization parameter and the activation energy

and the effect of using differ criteria for the inner-shell reorganization have recently been

considered in some detail [15]. The reorganization energy and the contributions of the individual

reactants turn out to be quite sensitive to the model used.
2. Solvent Reorganization Energy

Because of Coulomb interaction terms the solvent reorganization energy is not as readily broken
down into contributions from the separate reactants. We illustrate the approach used to calculate
the solvent reorganization energy by using the zero-electronic-interaction, two-sphere model
developed by Marcus [1, 19, 20] ' -

The familiar Born expression for the free energy of equilibrium solvation of a charged

sphere is

AG, =—(g‘2 (1—’%} (3.10)

s

where ge is the charge on the ion, a is its radius and Dy is the static dielectric constant of the

medium. The equilibrium solvation energy can be resolved into two contributions

a6 ﬂ[lﬂﬂ{iw_} a1

e 2a D 2¢ | D D

op op s

where the first contribution is the equilibrium solvation due to the electronic polarization of the
medium and the second is the contribution from its orientational-vibrational polarization. Dy is
the optical dielectric constant of the medium. Note that the orientational-vibrational polarization
term contains the Pekar factor (1/Dop — 1/Ds). The electronic polarization is assumed to be rapid
and capable of keeping up with the transferring electron. The orientational-vibrational
polarization is much slower and lags behind. Energy conservation requires that the orientation-
vibrational polarization adjust to a nonequilibrium value prior to the electron transfer.

Marcus devised a two-step path for calculating the reversible work required to establish a
nonequilibrium orientational-vibrational polarization of the medium. In the first step the

orientational-vibrational and electronic polarization of the medium is changed from being in

13



equilibrium with the initial charges ¢29 and ¢39 to being in equilibrium with the (hypothetical)
charges g2" and g3*. In the second step the orientational-vibrational polarization remains
appropriate to g" and g3* but the electronic polarization is changed back to being in equilibrium
with 79 and ¢30. The energy required to reorganize the solvent to the nonequilibrium

configuration appropriate to charges ¢>* and g3 is then the sum of the work done in these two

paths.
A =2 -2 [6-2] (a-#\a-#)1 i
] P VI 2, b G2

The reactants are treated as rigid spheres and their radii are not allowed to change during the
reorganization process: the radii in Eq. (3.12) are the average radii defined by 1/a = (1/ap +
1/a3)/2 and r is the distance between the centers of the spheres. Note that the numerators in Eq.
(3.12) contain the square of the difference of the charges (or, in the case of the electrostatic
interaction term, the product of charge differences) and are not simply differences between the
squares of charges, as might have been expected on the basis of the Born equation.

Analogous to the case of the inner-shell reorganization, energy conservation requires that

the transition-state charges for the solvent reorganization be equal.
q2* = q3* =q* (3.13a)
Minimizing the resulting solvent reorganization expression yields
q* = (22 + ¢392 | (3.13b)

and substitution into Eq. (3.12) yields Eq. (3.14a) for the free energy of activation

AG;‘M:.Z_Z _l_+_1__l 11 (3.14a)
4\2a, 22, r\D D

where it has been assumed that the zero-interaction donor and acceptor sites differ by a single
electron, i.e., (¢3Y — g20) = 1. Similarly, substitution into Eq. (3.12) of g2* = ¢3° and g3* = ¢,0
yields Eq. (3.14b) for the solvent reorganization energy in a vertical one-electron transition with
Aout = 4AGoyt*.

14



1 D T B
Ao = €| m—+——=|| ——— (3.14b)
2¢y 2ap r)\ D, D

If there is appreciable delocalization in the initial (equilibrium) state then less than a unit of
charge will be transferred from the donor to the acceptor. In terms of the mixing coefficients the
zero-interaction charge difference (20 — ¢39) needs to be scaled by (ca? — cbeq = (1 — 2¢p2)eq
to obtain the "real" charge transferred. We thus obtain

Ag =(ca® - Cbz)eq = (1- 2cbz)eq (3.15)

At the minimum of the adiabatic curve, i.c., at the equilibrium configuration of the reactants,
(cb2)eq is given by Eq. (2.17) so that

i Aty
[(1—265)6(]} _(1—7— (3.16)
Electron delocalization in the initial state thus scales the solvent activation barrier by (1 —

4H,n2/\2).

The vertical reorganization parameter A is a property of the diabatic states, (Hap = 0) and
Aout continues to be given by Eq. (3.14b) regardless of the degree of initial state delocalization.
When appreciable delocalization is present we add a prime to indicate that A has been modified to
allow for the reduction in the charge transferred [15,21] In other words, A' denotes a
reorganization energy that has been scaled by (1 — 4Hgp2/k2). (The parameter A' used here and in
[15] corresponds to Appd introduced earlier [21].)

' 2
A’out = 2’out(l - '4272,3'3J ' (3.17a)

Similar considerations apply to the inner-shell reorganization. When initial-state delocalization is

present (d20 — d30) is scaled by (1 — 2cp2)eq giving

, 2
A :/1,.“(1—4;’2’;") (3.17b)

Consequently

15



(3.17¢)

In a sense the primed (scaled) quantities are the "actual" vertical reorganization energies since
their values are determined by the actual charge transferred. While it would be convenient if A'
was the seperation between the diabatic energy curves at the reactant's equilibrium configuration
(Xmin), it is not. The diabatic curves (Hap =0) correspond to a charge transfer of one electron
with this charge abruptly transferring at the transition state: delocalization is not incorporated
into the diabatic surfaces. This topic is discussed further under optical charge transfer in Section
[1ID.

3. Time Scales for Solvent Electronic Polarization and Electron Transfer

The above treatment is based upon the traditional Born-Oppenheimer approximation which
states that, when nuclei move, the electrons can almost instantaneously adjust to their new
positions. Another relevant time frame is the time required to establish the electronic
polarization of the medium. In order to characterize this time frame Kim and Hynes consider the
ratio of Ve, the electron hopping frequency, to Vep, the frequency characteristic of the solvent
electronic polarization. The Born-Oppenheimer-based treatment is valid provided that this ratio
is much less than unity, i.e., the time scale for the adjustment of the electronic polarization is
much shorter than that for the transferring electron [22-26],

The electron hopping frequency may be estimated from time-dependent perturbation
theory. If Hyp is treated as a constant perturbation, the system will start to oscillate between the
two diabatic states once the perturbation is turned on. In a bimolecular reaction, for example, the
perturbation is turned on upon formation of the precursor complex, while in a covalently
attached (bridged) binuclear system it can be turned on upon reduction (oxidation) of one end of
the fully oxidized (reduced) system by an external reagent or by photoexcitation. If the system is
in the diabatic reactant state at # = 0, then the probability of it being in the product state at some

later time ¢ is given by the Rabi formula [27].
2 G-G
A= _451;,_2 sin Mm (3.18)
(&-a) !

Consider first the case where the system is initially at the nuclear configuration of the

adiabatic minimum, i.e., (G2 — G1) = A. The system will start to oscillate between the two
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diabatic states with a frequency equal to A4 which corresponds to ~ 5 x 1014 s°1 for A = 40 kcal
mol-!. The maximum value of the probability of finding the system in the product state is
4H,p2/A2 or 2 x1073 for Hap/A =2 x 10-2. There is thus only a very small probability that weak
coupling will drive the system into the product state at a nuclear configuration near the initial
state minimum. Since the frequency with which the system oscillates under the influence of the
perturbation is A/h, the maximum frequency of attaining the product state (i.e., the maximum
probablity per unit time) is 4H,p2/hA. In other words, Ve at the adiabatic minimum is estimated
to be = 1012 s-I for a moderately coupled Class II system (Hyp, =100 cm-!, A = 10 kcal mol-1).
Since Vep ~1015 571 or higher for most colorless solvents [25], the ratio Vel/Vep is much less than
unity for a weakly or moderately coupled Class II system near the adiabatic minmum.

We turn next to the frequency of electron hopping in the transition state. As is evident
from Eq. (3.18) with (G — G1) = 2H,p, the frequency of electron hopping in the transition state
is equal to 2H,p/h (see also the discussion following Eq. (3.4)). Thus the transition-state hopping
frequency V) is < 1013 571 for a weakly or moderately coupled Class II system and Vel/ Vep << 1
at the transition state. Thus the condition for the validity of the Born-Oppenheimer
approximation will be satisfied by most weakly and moderately coupled Class II systems. For
symmetrical Class II systems the free energy of activation will then be given by the traditional
Eq. (2.14) [22-26] except that a correction for the so-called exchange field may be needed under
certain circumstances. The exchange field arises from the overlap charge distribution (e¥,¥) and
serves to lower Agyt (more correctly, to stabilize the transition state) and to reduce the effective
Hay (22, 25], However, there is no exchange field when the diabatic wave functions are
appropriately chosen, i.e., when they are based on the exchange dipole moment (uap, see below)
being zero (28] and no exchange-field correction to the traditional expression for the free energy
of activation is then required.

In the Born-Oppenheimer limit the electrons of the surrounding medium equilibrate to the
instantaneous position of the transferring electron while the orientations of the medium dipoles,
which occur much more slowly, adjust to the smeared-out charge distribution of the transferring
electron. When the time scale for electronic polarization is slower than, or comparable to, the
time scale of the transferring electron, it becomes necessary to use a self-consistent treatment in
which both the electronic polarization and the orientational polarization respond to the smeared-
out charge distribution of the transferring electron (23], Including the interaction of this charge
distribution with the electronic polarization gives rise to a nonlinear Schrodinger equation in
which the Hamiltonian depends on the wave function for the donor-acceptor pair. Such a
treatment becomes increasingly important as the electronic interaction increases and introduces
terms into the free energy of activation that have the net effect of increasing the activation
energy beyond that given by the Born-Oppenheimer limit [25] In the limit that the time scale for
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the solvent electronic polarization becomes very long the electronic polarization can no longer
keep up with the transferring electron and the electronic polarization will contribute to the

activation barrier in much the same way as the orientational-vibrational polarization.
D. Optical Charge Transfer

In addition to thermal activation, electron transfer between the donor and acceptor sites can also
be effected by the absorption of light. As a consequence, A and Hap, can be obtained from

spectroscopic properties.
1. Transition Energies

The energy of the light-induced charge transfer transition in a symmetrical double-well system is
given by Eq. (3.19) [29, 30],

Vinax = A (3.19)

Since A for a symmetrical localized system is independent of Hap, Eq. (3.19) holds throughout the
double well regime [11] Further insight into Eq. (3.19) can be obtained by noting that Viyax is
also given by
Vmax = M + 4Hap2/\ (3.20)

The first term on the RHS is the scaled reorganization energy and the second term is a further
quantum-mechanical contribution to the transition energy. Although the scaled reorganization
energy associated with the charge transfer is reduced by the delocalization, this decrease is
compensated for by the repulsion of the curves. The net effect is that Vjax remains constant.
Thus, even when appreciable delocalization is present, Vinax Will still exhibit the full solvent
dependence predicted for the very weakly interacting system.

The energy of the optical transition in a symmetrical Class III system is given by

Vmax = 2Hgp (3.21)

so that Hyp for symmetrical Class III complexes can be obtained directly from the energy of the
optical transition [29]. Note that the optical transition in a Class III system no longer involves
charge transfer: the transition occurs between delocalized molecular orbitals of the complex and is

not accompanied by a net dipole-moment change.
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The energy of the charge transfer transition in an unsyrametrical double-well system is

given by

2H, AG®

1+ O
(A+AG°)

Vinana = (A +AG°) (3.22)

provided that Hpp < (A + AG©)/2 [15]. When the Hap? contribution may be neglected, the energy
of the charge transfer transition in an unsymmetrical double-well system is given by the familiar
Eq. (3.23)

Vinaxa= A + AGO (3.23)

Finally, although Vphax for a symmetrical double well system is independent of the degree
of electronic interaction, the free energy of activation does depend on Hap. Thus when AG® may

be neglected, the ratio Vipax/AG™ for a double-well system is given by

v 4
=R = (3.24a)
2
AG (1-24,/2)
while, when the electronic interaction may be neglected, the ratio is given by
v 4
=R = 3.24b
AG  1+AG/A (3.24b)

Evidently Vyax/AG™ is < 4 for a weakly coupled, endergonic charge-transfer reaction and > 4 for”
a weakly coupled, exergonic charge-transfer reaction or for charge transfer in a moderately
coupled symmetrical double-well system. The value of Vipax/AG™ can thus provide information
about the degree of electronic interaction. However, in practice the latter is more readily obtained

from the intensity of the charge transfer transition.
2. Intensities and Dipole-Moment Changes

Using the Mulliken formalism, Hush[29] showed that the electronic coupling element is

related to the intensity of the charge transfer transition by

19



L, A
Avl/z)

2 vmaxgma\
A, =2.06x107 '

7ab

(3.25)

where Vimax and AV, are the band maximum and width in wave numbers, 74}, is the distance
separating the donor and acceptor charge centroids in Angstroms, and the band is Gaussian
shaped [11] Equation (3.25) is exact within a two-state model and is applicable to both
symmetrical and unsymmetrical Class Il and Class 11l systems [11],

The Mulliken-Hush expression is a particular form of the more general equation
Vinax bz

H,, =
ub—lua

(3.26)

where 17 is the transition dipole moment and (up — #a) is the difference between the dipole
moments of the initial and final diabatic (localized) states [11,31) n the generalized Mulliken-
Hush treatment formulated by Cave and Newton [32, 33], the diabatic states are obtained by
applying the transformation that diagonalizes the adiabatic dipole moment matrix. Since uap, the
transition moment connecting the diabatic states, is zero, the value of (up — ) 1s maximized.
With this definition of the diabatic states, the diabatic dipole-moment difference is related to the
measured dipole-moment change (¢ — #1) by Eq. (3.27). The diabatic dipole-moment difference

can thus be obtained from measurable quantities [32],

2 5 1/2
= 0, = (= ) 4 | (3.27)

Equation (3.25) follows from Eq. (3.26) by noting that rap = | (uv — pa)le | and that the transition
dipole moment is given by Eq. (3.28)

/o

= o 3.28a
Hha \[1.08 X107y, . (3-:282)
-fos :4'61X10‘9(6maxAv1/2) (328b)

where fos is the oscillator strength of the transition [11,31], Equation (3.21) is obtained by
noting that (i — y1) is zero for a delocalized system and therefore, from Eq. (3.27), (up — #a) =
2u12. Finally, since the adiabatic and diabatic dipole-moment changes are related by

(U2 = p1) = (b~ pHa)(1 —2cp?) (3.29)
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it follows from Eq. (2.11c¢) that

o

-t _ G-
B =ty Gy

(3.30)

Q9

There is thus an inverse relationship between the ratio of the adiabatic and diabatic dipole-

moment changes and the ratio of the corresponding free-energy differences within the two-state

model.
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IV. QUANTUM MECHANICAL TREATMENT

Although the semiclassical expressions work well at high temperatures, they break down at low
temperatures and/or at high reaction exergonicities. Nuclear tunneling contributions to the rate
can become very important under such conditions. Although corrections for nuclear tunneling
can be introduced into the semiclassical treatment, tunneling enters naturally into a quantum
mechanical treatment.

The quantum mechanical treatment of nonadiabatic electron transfers are normally
considered in terms of the formalism developed for multiphonon radiationless transitions. This
formalism starts from Fermi's golden rule for the probability of a transition from an vibronic state

Ay of the reactant (electronic state A with vibrational level v) to a vibronic state By, of the

product.
W, = 4”,7” o (4.12)
0w = Xl s, ) 8(en. - 5.) (4.1b)

where py is the weighted density of final states, €, and &, are the unperturbed energies of the
vibronic levels and d is the delta function that ensures energy conservation. To obtain the
thermally averaged probability per unit time, &, of passing from a set of vibrational levels {Ay}
of the reactant to a set of vibrational levels {By} of the products we assume a Boltzmann

distribution over the vibrational levels of the reactants and sum over these levels.

A= -‘%ﬁl’-(}?(') | (4.2a)
1 ~€,
FC= —Q—Z ;exp[T]:)éi“Bw(S(é‘Av - st») (4.2b)

~€,

o= Zexp( - ] (4.2¢)
where FC is the thermally averaged Franck-Condon factor. If the reactant and product energy
surfaces are approximated as harmonic, the FC factors can be explicitly calculated [34,35]

Three broad classes of vibrational modes need to be considered: the high-frequency (fast)
modes (Av> 1000 cm!) which are mainly intraligand vibrations, intermediate modes (1000 ¢m-!
> hv> 100 cm!) that typically include the metal-ligand stretching vibrations and higher
frequency solvent orientational-vibrational modes, and the low-frequency (slow) modes (Av <

100 cm-1) which are primary solvent modes but can include low-frequency intramolecular modes.
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At ordinary temperatures Avy >> kT ~ hv, >> hv; and the low-frequency modes can be treated

using classical (continuum) expressions.
A. Two-Mode Systems

We first consider the case with one high-frequency mode and one low-frequency mode.
When the high-frequency mode (vy, with reorganization energy of Ay) is in the low temperature
limit and the low-frequency mode (vs, As) is treated classically, the rate constant for electron

transfer is given by

1/2 . 2
2 3 = JAV, + AG + A,
=] 47 Y Fexp i ) (4.3)
hw\Arr) 47 4ART
—5 1 ‘
where /= e’ s , 8= A and [«:Hfb < AV, ,, M;Z [36-38]. Since the solvent (or other low-

frequency) mode behavcfsvélassically while the hfrgh-frequency mode can tunnel it is most efficient
for the solvent modes to use enough of the driving force to reduce the solvent barrier significantly
with the remaining driving force absorbed by the high-frequency modes. Moreover, since hvy >>
kT all of the reaction occurs from the lowest vibrational level of the initial state, i.e., only Ay —
{B;} vibronic transitions are considered. The exponential term in Eq. (4.3) is a Gaussian that
describes the rate constant reduction deriving from the solvent reorganization. The Gaussian is
peaked at (jiv + AGO + Ag) = 0 and has a width of 24/4A_R7". The transition with j* = -(AG? +
As)/hv will normally dominate the sum. The rate constant will be maximized when the solvent
reorganization is barrierless. This occurs when the effective driving force for the solvent
reorganization, -(AGO + jhvy) is approximally equal to A, i.e., whenj* = -(AGO + Ag)/hvy. The
effective energy gap for the high-frequency mode is -(AG%+ Ag). The energy change of the
reactant/product and the solvent for the single largest term in the sum of Eq. (4.3) is plotted vs
driving force is illustrated in Figure 7. The solvent accepts an amount of energy that is close to
the A for the system while the high-frequency mode will accept no energy for very low driving
forces and the majority of the energy change when |AGO| >> A; + 4,.

A convenient closed-form expression for the rate can be derived using Eq. (4.3).

. 2
. :‘m;—{{:biexp _(/*/zvv+AG° +/15) (4.4a)
v, AART
where -
. (ac +4,) ) 2/151?7(}/; 1) (4.4)
av, (/zvv)



(AGO +As)
A

v

y = ln — —1‘ (44C)

The rate constants in the inverted region calculated from Eq. (4.1) are almost independent of

temperature and decrease much less rapidly with driving force than predicted by classical models
[39]

B. Three-Mode Systems

Next we consider a reaction that contains an active mode in each of the regions outlined

above. The expression for the three-mode case is

1/2
A 4n’ Av
fo=a| AT S coth 7| Sesch| 2
477, (/1511’]’] CXP[ ©° ( )lzoj% Y 7] ( es¢ (2&7])

(AG0 + A+ AV, +/;/va)
47 RT

(4.5)

X exp| —

where j, and j. are the changes in the vibrational quantum numbers for the high and intermediate
frequency modes, respectively[39]. Again the last exponential term in Eq (4.5) is Gaussian
peaked at (AG" +A + j AV, + jC/va) =0 with a width of 24/44_R7 . In this case energy sharing
can take place between the high-, intermediate- and low-frequency modes; the possibility of
energy borrowing is increased but again the low-frequency mode is required to pass over its
barrier while the other two modes can tunnel. Figures 8 and 9 show the energy distribution for
the dominant contribution to the double sum. The low-frequency mode receives = A of energy
to minimize its barrier; the intermediate mode receives = Ac, and the bulk of the energy for large
driving forces is deposited in the high-frequency mode. Only very seldom is the low or
intermediate-frequency energy of the product less than that of the reactant. This is shown in
Figure 9 where Ag; is negative.

These expressions show that normally most of the excess energy is acquired by the high-
frequency mode and that the intermediate-frequency mode receives an amount of energy that is
less than one high-frequency vibrational quantum. Only when A, >> A does the intermediate-
frequency mode receive significantly more than a single high-frequency quantum. The effect of
an intermediate mode on the rate constant for the reaction is relatively modest in the normal
region but becomes important in the inverted region where the initial state needs to dispose of
significantly more energy (Figure 10). In this region systems that have both high- and
intermediate-frequency modes exhibit significant rate enhancements due to tunneling and the

decrease of the rate constant with increasing driving force is attenuated. Also, due to the
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intermediate-frequency mode the sinusoidal quantum beat effect observed for the dependence of
the rate constant von driving force in the inverted region is significantly attenuated.

The three-mode expression is most useful when discussing the rates of nonradiative
deactivation of excited states in the inverted region. In this region, where -AG9 >>A, + A + A, a
much simpler expression can be used since the product is created with a high vibrational quantum
number in the high-frequency mode. This expression is Eq (4.6) provided that SA; and 104 are
each < |AGY).

1/2
4/ _ n
ok 2/zvv(AG° + A+ /ls)

I

1 2
A= (1o +1)(A +A,) - 7,06 - (Y/‘;T“L) ( ART+ %Coﬂ{ é_z/:_r D (4.62)

v

X exp| —
VA%

v

where

Yo = ln( _iG‘)) -1 (4.6b)

v

The above three-mode expression very well approximates the more exact expression Eq. (4.5) but

does not show the quantum beat effect.

V. CONCLUSIONS

The expressions derived from the traditional two-state model are useful in rationalizing a variety
of electron transfer processes. Both thermal and optical charge transfer can be treated and, although not
discussed here, electrochemical processes as well. The two-state model neglects contributions from
higher electronic states in calculating the energies of the zero-order ground states of the reactants and
products. Contributions from higher electronic states are, however, frequently needed in calculating
electronic coupling elements. Mixing with such states leads to modification of the ground-state energies
when the excited states are sufficiently low lying. Such perturbations are absent in the zero-interaction
limit.

Some key features of the two-state model are summarized here:
(N Although the reaction coordinate for charge transfer is not uniquely defined, the vertical
difference between the zero-order reactant and product free energies is related to the degree of nuclear
reorganization and consequently this difference provides a useful measure of the progress of the

reaction(Section IIA).



(2) The degree of charge transfer is o1 linearly related to the reaction coordinate defined above

(Section 1IB).
3) The splitting at the intersection of the adiabatic curves for a self-exchange reaction, 2H,p, enters
into the expression for the free energy of activation for the exchange reaction analogous to the manner in

which the driving force, -AGO, enters into the expression for the free energy of activation for a marginally

5 wililled 223% 12 xp)

adiabatic net reaction (Section [IB).
(4) The vertical difference between the free energies of the reactants and products of a self exchange

reaction remains equal to A at the equilibrium configuration of the reactants (or products) regardless

o
—_
7}
Q
(@}
=
@]
=
wn
p—
ja
vo)

the magnitude of the electronic coupling as long as the system remains valence trappe and
[1IB).
(5) The frequency of electron hopping in the transition state is equal to 2Hap/h (Section I11C).
(6) The electron transfer distance is defined by the difference between the dipole moments of the
localized (diabatic) reactant and product states (Section I1ID).
(D At low temperatures and/or at high reaction exergonicities nuclear tunneling contributions to the
rate and other quantum effects become important. Two- and three-mode expressions are presented that
allow for tunneling of the higher frequency modes (Section IV).

Overall, the two-state model is remarkably successful in interpreting electron transfer and related
properties and forms the cornerstone for interpreting a variety of complex physical, photosynthetic,

catalytic and biological processes.
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Figure 1. Plot of the diabatic free-energies of the reactants (left-hand curve, G,) and
products (right-hand curve, Gy) vs the reaction coordinate for an electron transfer reaction
with AG® = 0. The sum (dots) and difference (dot-dash) of the reactant and product free-
energies are also plotted.

Figure 2. Plot of the diabatic free-energies of the reactants (G,) and products (Gyp) vs the
reaction coordinate for an electron transfer reaction with AG® < 0. The sum (dots) and

Figure 3. Plot of the diabatic (G,, Gy) and adiabatic (G, G,) free-energies of the
reactants and products vs the reaction coordinate for an electron transfer reaction with
AG® =0. H,, is the electronic coupling element between the diabatic states of the
reactants and products and A is the reorganization energy for the reaction.

Figure 4. Plot of the adiabatic free-energy surfaces vs the reaction coordinate for an
electron transfer reaction with AG® = 0 and Hyy/A varying from 0 to 0.5.

Figure 5. Plot of the differences between the adiabatic free-energy curves shown in
Figure 4 vs the reaction coordinate for an electron transfer reaction with AG®=0and
Hy/A varying from 0 to 0.5.

Figure 6. Plot of cb2 vs the reaction coordinate using Eq. (2.12) with Hyw/A varying from
0to 0.5.

Figure 7. Plot of the energy in a particular mode for an electron transfer reaction with
two active modes. Ag, and Ag; are the differences between the energies of the products
and reactants in the high- and low-frequency modes, respectively; A;, (cm™) and Av; (cm
" are (2000, 2000) and (1200, -) for the high- and low-frequency modes and the
temperature is 300 K. The calculations were done using Eq. (4.5). The straight line, the
stepped solid line and the dotted lines are the total energy difference (AG®) and the
differences between the energies of the products and reactants in the high- and low-
frequency modes, respectively.

Figure 8. Plot of the energy in a particular mode for an electron transfer reaction with
three active modes. A&, Ag. and Ag are the differences between the energies of the
products and reactantsin the high-, intermediate- and low-frequency modes, respectively;
Ai, (cm™) and Av; (cm™) are (2000, 2000); (200, 200); and (1000, -) for the high-,
intermediate- and low-frequency modes and the temperature is 300 K. The calculations
were done using Eq. (4.5). The straight line, the stepped solid line, the dashed line and
the dotted lines are the total energy difference (AG®) and the differences between the
energies of the products and reactants in the high-, intermediate- and low-frequency
modes, respectively. ‘
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three active modes. Ag,, A& and A& are the difference between the energies of the
-1

products and reactants in the high-, intermediate- and low-frequency modes A;, (cm™) and
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low-frequency modes, respectively, and the temperature is 300 K. The calculations were
done using Eq. (4.5). The straight line, the stepped solid line, the dashed line and the

dotted lines are the total e rgy difference (AF ) and the differences between the enero gies

o>

of the products and reactants in the high-, intermediate- and low-frequency modes,

respectively.

Flgure 10. Plot of the logarithm of the Franck-Condon factors for the electron transfer
. . .

YNreadion
1, mode €xX PAVODIVLL,

e q-
(4.3); three- mode expression, Eq. (4.5); and the approx1mate three mode expression, Eq.

(4.6) vs driving force. The parameters used (A, Ac, AV, An, AVy in cm’ ) for the
calculations are classical: (3200); two-mode, (1200, 2000, 600); three-mode (600, 600,

200, 2000, 600) and the temperature is 80 K. The solid line (inverted parabola), dotted
line, oscillating solid line and the dashed line are for the classical expression, Eq. (3.3),
the two-mode expression, Eq. (4.3), the full three-mode expression, Eq. (4.5), and the

approximate three-mode expression, Eq. (4.6), respectively.
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Ehrgzle-mode Eq. (4.6)

.....

Two-mode E‘q (4.3)

<+ Classical Eq. (3.3)
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